Zirconia Ceramic Phone Backplane Stands Out in 5G Era

By the end of 2018, 154 mobile operators around the world are carrying out 5G technology tests or trials, and the number of countries participating in 5G has been expanded to 66. With the advent of 5G era, the mobile phone industry will usher in a new round of reform, and the mobile phone backboard market is facing a reshuffle.

Zirconia ceramic phone backplane stands out

5G era requires faster signal transmission, 1 to 100 times faster than 4G. 5G communications will use a spectrum of more than 3Ghz, with shorter millimeter-wave wavelengths. Compared with the metal backplane, ceramic backplane has no interference to signal and has incomparable superior performance of other materials, which is favored by mobile phone manufacturers.

The contrast of the backplane of several kinds of mobile phones

Among all-ceramic materials, zirconia ceramic has the advantages of high strength, high hardness, acid and alkali resistance, corrosion resistance and high chemical stability, as well as the characteristics of scratch and wear resistance, no signal shielding, excellent heat dissipation performance, and good appearance. Therefore, it becomes a new mobile phone body material after plastic, metal, and glass. The application of zirconia ceramic in the mobile phone is mainly two parts: backplane and fingerprint identification cover.

Zirconia Ceramic Phone Backplane Stands Out in 5G Era

Preparation and difficulty analysis of zirconia cell phone ceramics

The preparation of zirconia ceramic backplane mainly includes the preparation, molding, sintering, grinding and polishing process of zirconia ceramic powder, in which the preparation of zirconia ceramic powder is the most important and most difficult part of the whole process.

Technological difficulties

The phone backplane powder of zirconia ceramic is nanocomposite zirconia. In the preparation of ceramics, the quality requirements include that the particle size distribution is normal, the particle shape is close to circular, the dispersion is good, and the purity is high. The preparation methods of nano-composite zirconia powders include the hydrothermal method, precipitation method, alcohol-brine hydrolysis method, and low-temperature gas-phase hydrolysis method.

The quality of powder directly affects the intrinsic quality and performance of finished products. High purity, ultra-fine particle size, narrow particle size distribution, and good dispersibility are important bases for evaluating the quality of ceramic powders. The powder agglomeration and surface modification of nano-composite zirconia have become two major problems. With the development of technology, researchers have found corresponding solutions.

Firstly, the agglomeration of zirconia powder is a big problem. Gan Xuexian et al. investigated the final depolymerization effect by designing and using different grinding equipment and process parameters. With d50=1.355μm zirconia powder as the research object, when using vertical ball mill, vertical ball mill and horizontal sand mill as the grinding equipment, serving with φ2mm zirconia ball as the grinding medium, with m medium: m material = 5:1 medium material ratio grinding for 15h, detection zirconia slurry size after grinding, the results show that: the horizontal sanding machine has the best grinding effect, and the d50 of zirconia slurry is 0.303μm. When the horizontal sand mill is adopted as the grinding equipment, the grinding effect is best under the conditions that the ratio of medium material (m medium: m material) is 4:1, the solid content of slurry (w) is 45%, the linear speed is 10m•s-1, and the grinding time is 25h.

Secondly, in terms of surface modification of zirconia powder, Yue Liang et al. drew the following conclusions through experiments: the sintering activity of zirconia powder was significantly improved after horizontal stirring grinding and manual granulation, and the sintering density was close to 99.5% at 1400℃; after grinding zirconia powder, the bending strength of sintered samples was lower than that of the original powder mainly because of the large size defect. Therefore, it is necessary to have appropriate granulation technology to improve the powder forming performance; it is suggested that improving the stability of phase transition is beneficial to obtaining high-performance zirconia powders.

Stanford Advanced Materials supplies high-quality zirconia products to meet our customers’ R&D and production needs. Please visit https://www.samaterials.com/ for more information.

Zirconia Ceramic Conversion Film Used in Automobile Coating Field

Phosphating is the most common pretreatment technology in the field of automobile coating. A phosphate conversion film is produced after phosphating the body steel plate, which can not only protect the base metal but also improve the adhesion between the metal and the coating. All cars are phosphated before they are painted.

A-typical-phosphating-and-E-coating-process. Source: researchgate.net

However, the traditional phosphating process has the defects of high energy consumption and high pollution. In addition, nitrite in the phosphating bath has high carcinogenicity, and its storage and use requirements are high, which increases the burden on enterprises. Therefore, under the dual drive of environmental requirements and energy cost, the phosphorus-free film-forming technology represented by the new zirconia conversion film technology has become the development consensus of green coating for automobiles.

Principle of film formation of zirconia ceramics

Zirconia ceramic film-forming technology is one-step film-forming, which means a surface treatment agent is used to treat the metal surface. The following diagram shows the film formation principle of a zirconia ceramic on the steel surface. The main materials are fluoro zirconic acid and zirconium salt. Zirconic acid and zirconium salt react directly with the metal substrate, and the zirconia ceramic film formed is attached to the surface of the metal substrate to play a role in corrosion protection.

At present, the sol-gel is the main method to produce zirconia conversion film. The so-called sol-gel refers to the formation of the three-dimensional network configuration of colloidal particles crosslinked with each other, which can mechanically wrap a large number of solvents inside the aggregate, making it no longer flow and become a semi-solid state and gel. When the density of sol particles in colloidal solution is higher than that in solution, the sol particles tend to sink under the action of gravity. If some parameters in the solution are changed to make the deposition rate of colloidal particles greater than the diffusion rate, the colloidal particles will rapidly precipitate out of the solution.

Characteristics of zirconia ceramic film

In terms of film properties, the ceramic coating formed by zirconia conversion film can completely replace the traditional phosphating film. In addition, zirconia conversion film also has the characteristic of being lightweight, while its film thickness is about 50nm. The film thickness means the low film weight, and the weight of the traditional phosphating film is usually 2-3g/m2, while that of zirconia conversion film is only 20-200mg/m2. The weight of zirconia conversion film varies according to the raw materials provided by the supplier, but in general, the weight of zirconia conversion film is about 200 times lower than that of traditional phosphating film.

In terms of technological process, the new zirconia conversion film technology is simple and fast, and generally only takes about 30s to form a complete film, which can significantly reduce the cost of water consumption, wastewater treatment, energy, and manpower.

Ceramic Film

Moreover, the new process is suitable for a variety of metals (Fe, Zn, Al, Mg), so various plates can be mixed line processing. In the process of treatment, zinc-plated plate and aluminum plate without waste slag formation, only a small amount of slag was produced in the treatment of cold-rolled plate. The resulting slag can be easily removed using a conventional phosphating system, without clogging the nozzle or adversely affecting coating properties or the appearance of the electrophoretic coating.

In daily process management, the bath of the new zirconia film-forming technology is very stable and easy to control. At ordinary times, the temperature and PH value are only needed to be controlled in production, which does not need to be like zinc phosphating that requires regular daily testing of total acid, free acid and zinc, nickel, manganese content, and many other parameters, so a lot of process management costs are saved.

Zirconia film-forming technology has been applied earlier in foreign countries. Henkel group of Germany has the absolute right to speak in this field. As early as 2002, Henkel was the first company to introduce zirconium pre-treatment materials suitable for a variety of plates; in 2008, GM used Henkel’s zirconium pretreated materials at its SanJose Dos Campos plant in Brazil; Henkel’s pretreatment materials were also used at Ford’s TwinCity plant during the same period.

Stanford Advanced Materials supplies high-quality zirconium and zirconia products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.