10 Applications of Zirconium You Should Know

Zirconium, chemical symbol Zr, atomic number 40, melting point 1852°C, is one of the high melting point metals. Zirconium with special excellent properties, such as the resistance to high temperature, oxidation, corrosion, and abrasion, all of which made it a wide range of applications as the structured and functional ceramic material in many industrial sectors, especially in the high-tech industry.

Zirconium products and their applications

  1. Zirconium silicate

Zirconium silicate is an important kind of traditional zirconium product. Products can be prepared with zircon sand as raw material, after grinding, calcination, and powder, is a kind of high-quality and inexpensive ceramic glaze opacifying agent, mainly used in ceramics and porcelain, building ceramics color glaze production, has been widely used in high-grade refractory materials, precision casting, emulsified glass and other industries.

Zirconium Silicate Powder

  1. Zirconium carbonate

Zirconium carbonate is mainly used as cosmetic additives and waterproof agents, flame retardants, sunscreen, fiber and paper surface additives, and can be used for preparing zirconium cerium catalytic composite material, is an important raw material for textile, papermaking, paint, cosmetics industry, the amount of growth in recent years.

  1. Zirconium oxychloride

It can be used for other zirconium products such as two – zirconium oxide, zirconium carbonate, zirconium sulfate, zirconium and hafnium compound preparation and separation of zirconium and hafnium metal material, can also be used for textile, leather, rubber additives, metal surface treatment agent, coating driers, refractories, ceramics, catalyst, fire retardant, and other products.

  1. Fused zirconia

Fused zirconia is mainly used in the production of glazes and refractories. Due to the high content of impurities in the fused zirconia, the use is limited.

  1. Zirconium sulfate

It is the important raw material in the production of leather tanning agent, wool processing agent and paint surface oxidation agent, can be used as a catalyst carrier, amino acid, and protein, precipitant, and deodorant, intermediate raw materials are for zirconium chemicals and metal zirconium and hafnium.

  1. Zirconium oxide

The white solid, non-toxic, tasteless, has enough stability of alkali solution and many acidic solutions, suitable for precision ceramics, electronic ceramics, optical lenses, glass additives, dissolving zirconia brick, ceramic pigment, glaze, artificial stone, refractory materials, grinding and polishing industry and products.

It is also known as semi-stable, stable zirconia is a white powder with non-toxic, tasteless, and stable chemical properties, the specific surface area is controllable, manufacturing all kinds of special ceramics, advanced refractories, new energy materials, optical communication devices, based on raw materials.

  1. Zirconia structural ceramics

Using the composite zirconium oxide as the raw material, including two kinds of products such as zirconia grinding and zirconia structure, the structure of zirconia mainly includes the zirconia special ceramic valves, fiber optic connectors, ceramic knives, watches accessories, ceramic scissors, textile porcelain, etc.

Since Zirconium has very good chemical corrosion resistance, zirconium shapes, such as zirconium tubes and zirconium rods are used to make equipment for the chemical industry.

Zirconium Rod

  1. Nuclear grade zirconium

It is an important strategic metal used primarily for nuclear-powered aircraft carriers, nuclear submarines, and civilian power reactors, as well as the cladding of uranium fuel elements.

  1. Industrial grade zirconium

It is mainly used for the production of industrial-grade zirconium – chemical corrosion resistance equipment, military industry, electronic industry, pipeline valve materials, special high strength and high-temperature alloy materials, electric vacuum, and lighting industry getter.

  1. Firearm zirconium

It is also used in the combustion of the flame zirconium sponge, and also can be used in alloy additives and metallurgical deoxidizers, chemical industry, civil flash fireworks and so on.

Please visit http://www.samaterials.com for more information.

What Are the Uses of Advanced Composite Ceramic Substrates in Missiles?

In the mid-1980s, the United States developed an aerospace aircraft program that required both high-temperature tolerance and light mass. For this purpose, a variety of new high-temperature materials were developed, including advanced resin matrix composites, metal matrix composites, ceramic matrix composites, and carbon/carbon composites. Ceramic material is the preferred material for missile radome because of its excellent mechanical, thermal and electrical properties. The radome is the most widely used ceramic matrix composite material in missile structure.

Missile radome

The missile radome is located at the front end of the missile. Its function is to protect the navigation antenna from damage so that the missile can effectively hit the target. It is not only an important part of the aerodynamic shape of the missile but also the protection device of the antenna. During the flight of the missile, the radome should not only withstand aerodynamic heating and mechanical overload, resist the erosion of rain, sand, and other adverse working conditions, but also meet the stringent requirements of electrical performance proposed by the missile control loop. Therefore, the missile radome material should have the following properties:

  • Excellent dielectric properties

In the guidance system, the transmission efficiency and aiming error of the radome are very sensitive to the dielectric properties of the material and its relationship with temperature and frequency. It is required that the material has low dielectric constant (10) and dielectric loss, and the dielectric properties do not change obviously with temperature and frequency.

  • Good heat resistance and thermal shock resistance

The high Mach number of the missile can make the radome of instantaneous heating rate is as high as above 120 ℃ / s, so the material is required to have good thermal shock resistance, and the molecular structure of the material is required to be stable when the temperature is raised, and the material properties (such as dielectric properties and mechanical properties) change little to ensure that the radome can work normally when the temperature is raised.

  • High-strength structural properties

The strength of the radome material should be high and rigid enough to satisfy the mechanical stress and bending moment caused by the longitudinal or transverse acceleration of the aerodynamic forces in the spacetime of the missile flying at high speed.

  • Resistance to rain erosion

It plays a decisive role in the design allowable range of impact Angle and the sensitivity of aircraft in rain erosion.

  • Low-temperature sensitivity

The dielectric properties and strength properties of general materials change obviously when they work at high temperatures. Therefore, the properties of the radome material, especially the dielectric properties and strength, are affected by the temperature change as little as possible.

Ceramic-based missile radome

Ceramic-based missile radome materials mainly include silicon nitride-based, silicon oxide-based and phosphate-based materials. Silicon nitride ceramics have not only excellent mechanical properties and high thermal stability but also low dielectric constant. Its decomposition temperature is 1900 ℃, its erosion resistance is better than fused silica, and it can withstand 6 ~ 7 Ma rating of flight conditions. Silicon nitride ceramic composite radome is one of the main research targets in various countries, which has been identified as the most promising radome material by the test of the Georgia Institute of Technology. Yttria Stabilized Zirconia (YTZ), also known as yttria-zirconia, is the strongest ceramic material. This material offers the highest flexural strength of all zirconia-based materials, and the research on zirconia-based materials as missile radome is in progress.

Ceramic-based-missile-radome

  • Silica-based material

Because of the high flying Mach number of the missile and the relatively long heating time, if the radome of the medium-range missile is made of a single quartz ceramic material, it cannot meet the bearing requirement of thermal stress. In order to meet the requirements of medium and long-range ground-to-ground tactical and strategic missile radome, quartz glass, high-silica puncture fabric and orthogonal tri-directional quartz fabric reinforced silica matrix composites have been developed and successfully applied.

  • Phosphate-based materials

Phosphate matrix composite material is a kind of Russian characteristic permeable material, which is made by impregnating cloth or fabric with a phosphate solution and then curing under pressure. Aluminum phosphate has stable performance in 1500 ~ 1800 ℃. At present, such materials have been used in cruise missiles, anti-missile missiles, tactical missiles and space shuttles. The most obvious disadvantage of phosphate is that it is highly hygroscopic, so the surface of the composite material needs to be coated with an organic coating for moisture-proof treatment.

  • Silicon carbide ceramic matrix composites

Silicon carbide ceramic matrix composites have a series of excellent properties, such as low density, high-temperature resistance, ablation resistance, erosion resistance, and oxidation resistance, and it has a wide application prospect in the field of aerospace. Since the late 1980s, the United States has successfully developed a series of C/SiC, SiC/SiC ceramic matrix composites, which can be applied to the re-entry nose cone of missiles, the front end of wings and other heat-resistant structures.

Please visit http://www.samaterials.com for more information.

Zirconium-containing Materials Used in the Refractories

As a new material, zirconium-containing material has been developed rapidly in the recent ten years. In the field of refractories, natural zirconium-containing mineral raw materials and artificial extraction or synthesis of zirconium oxide and composite oxide raw materials have also been widely used to produce a variety of excellent zirconium-containing refractories.

There are about 50 kinds of zirconium minerals known to us, among which more than 20 are common. Zirconium mineral raw materials for industrial use are mainly zirconium quartz, oblique zircon, hafnium zircon, and anisotropic zircon. With the development of science and technology, zirconium oxides and composite oxides have been extracted or synthesized by various processing methods and applied in various fields.

Zirconium-containing raw materials are widely used in the refractory industry, which is mainly because of their high melting temperature and strong chemical stability. They have good corrosion resistance to metal melt, slag, or glass fluid, as well as good thermal shock resistance, so they can be used as refractories for glass kiln, metallurgical industry refractories, and so on.

Zirconium-based-products

Zirconium-containing refractories are mainly used in the melting part, superstructure, side wall, and fluid hole of glass melting furnace. Refractories made from zirconium materials are widely used in the metallurgical industry and can be divided into zirconium quartz products, zirconia products, aluminum zirconia carbon products, zirconium carbon products, calcium zirconate products, zirconium boride products, zirconia modified refractories, etc.

Zirconium quartz products have the characteristics of high-temperature resistance, good resistance to acid slag, small erosion, slight viscosity of slag, small thermal expansion coefficient, good thermal shock stability, etc., which can be better used as the lining of steel drums, but also can be masonry in the direct impact of steel, slag line parts, around the nozzle and other key parts.

The main raw material for the production of zirconium quartz products is zirconium quartz concentrate, and some clay, pyrophyllite, chromium oxide, and zirconia can be also added as needed. In general, zirconium particles are small in size and are not suitable for direct brick production, which requires the raw materials of zirconium quartz and part of the combined clay to be mixed, semi-dry pressed, and made into the blank. There are a wide variety of zirconia products and many molding methods, such as mud pouring method, hot pressing method, machine pressing method, isostatic pressure method, etc.

Monoclinic-Zirconium-Oxide

Aluminum-zirconium carbonaceous product is developed on the basis of aluminum-carbonaceous product, and it can be used as sliding nozzle brick of ladle (or tundish), long nozzle, plug rod, immersed nozzle, and so on. Compared with the corresponding aluminum carbon material, aluminum zirconium carbon products have better oxidation resistance, thermal shock stability, erosion resistance, and higher strength, so the service life is longer. The addition of a certain amount of zirconia in refractory materials such as jade-quality, high-alumina, magnesium-calcium, aluminum-magnesium, magnesium-chromium and magnesium-carbon commonly used in the metallurgical industry can improve the chemical stability, thermal shock stability and strength of these materials. In these materials, zirconia is usually introduced in the form of zircon sand and zirconia.

The specific production process is usually the same or slightly changed before modification. Generally speaking, zirconium-containing raw materials have been widely used in the field of refractories due to their excellent properties, and their application scope will be more and more extensive.

Please visit http://www.samaterials.com for more information.

Rare Metals Indispensable to Modern Industries: Zirconium

Zirconium has been regarded as a precious stone since ancient times due to its rich and colorful color, playing a decorative role in human life. As people’s understanding of zirconium deepens, the application of zirconium has penetrated into every aspect of our life. For example, all kinds of buildings, ceramics, knives, ornaments, etc., as well as the military and nuclear power fields are also featured with zirconium.

Zirconium is mainly used in ceramics and refractories in the form of zirconium silicate and zirconia. Only 3 to 4 percent of zirconium ore is processed into metallic zirconium, or sponge zirconium, which is further processed into various zirconium materials. Zirconium has excellent nuclear properties because of its small thermal neutron absorption section, and the nuclear grade zirconium is used as the structural material of nuclear power aircraft carriers, nuclear submarine and civil power reactors, and the hull of the uranium fuel element. Another important use of zirconium metals is in the manufacture of alloys with excellent properties, such as aluminum zirconium alloy, copper zirconium alloy, iron zirconium alloy, and nickel zirconium alloy, zirconium tin alloy, and niobium zirconium alloy and so on.

zirconium alloy

Currently, the most used materials in the industry are zircon, while a small number of zirconium compounds and metals. Zirconium ore and mineral powder are mainly used in refractory, casting, abrasive, ceramic and electronic industries. Zirconium compounds, mainly zirconia, are used in refractories, abrasives, electronic materials, glass additives, gemstones, sensitive materials and precision ceramics.

Zirconium metals can be classified into atomic and industrial grades by use. Atomic energy grade zirconium refers to the zirconium with content of hafnium less than 0.01% in the metal, also known as hafnium zirconium or reactor-grade zirconium, which is mainly used in nuclear reactors as nuclear fuel sheathing materials and core structural materials. In the chemical industry, smelting, and other industries, zirconium does not need to be separated. Generally, zirconium containing about 2.5% of hafnium is classified as industrial-grade zirconium.

industrial-grade zirconium

As an active metal, zirconium forms an oxide film at room temperature, which gives zirconium and its alloys excellent corrosion resistance. Moreover, zirconium also has good mechanical and heat transfer properties, as well as significant cost advantages, which makes it an excellent corrosion-resistant structural material in today’s petrochemical industry.

The zirconium applied in chemical acid-resistant equipment, military industry, and electronic industry is called industrial grade zirconium. In terms of processing difficulty and technological level, zirconium metal and its alloy products are at the top of the industrial chain.

Stanford Advanced Materials supplies high-quality zirconium products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.

What are the uses of Zirconium in the Vacuum Industry?

As a rare metal, zirconium is widely used in the fields of aerospace, military industry, nuclear reaction and atomic energy due to its remarkable corrosion resistance, extremely high melting point, ultra-high hardness, and strength.

The surface of zirconium is easy to form a glossy layer of the oxide film, so its appearance is similar to that of steel. Zirconium is resistant to corrosion but dissolves in hydrofluoric acid and aqua regia, and it can react with non-metallic elements and many metallic elements to form a solid solution at a high temperature. Zirconium has good plasticity and is easy to be processed into zirconium plate and zirconium wire. Besides that, zirconium can absorb a lot of gases such as oxygen, hydrogen, and nitrogen when heated, and can be used as hydrogen storage material. Zirconium and hafnium are two metals with similar chemical properties, which are symbiotic and contain radioactive materials.

Zirconium Rod

The zirconium can absorb nitrogen violently when the temperature exceeds 900 degrees Celsius. At 200 degrees Celsius, 100 grams of metal zirconium can absorb 817 liters of hydrogen, equivalent to more than 800,000 times the hydrogen absorption capacity of iron. This characteristic of zirconium has been widely used. In the electric vacuum industry, for example, zirconium powder is coated on the surfaces of the anodes and other heated parts of the electric vacuum elements and instruments to absorb the residual gas in the vacuum tube, thus making the vacuum tube and other vacuum instruments, which have better quality and longer service life.

Zirconium can also be used as a “Vitamin” in the metallurgical industry, playing a powerful role in deoxygenation, nitrogen removal, and sulfur removal. For example, if a thousandth of zirconium is added to steel, its hardness and strength will increase dramatically. Zirconium-containing armor steel, stainless steel, and heat-resistant steel are important materials for the manufacture of defense weapons such as armored vehicles, tanks, artillery and bulletproof panels. When zirconium is mixed into copper and drawn into copper wire, its electrical conductivity does not weaken but the melting point is greatly improved, so it is very suitable to be used as a high-voltage wire. Zinc-magnesium alloys containing zirconium, which are light and high temperature resistant, are twice as strong as conventional magnesium alloys and can be used in the manufacture of jet engine components.

Zirconium alloy is a nonferrous alloy that is composed of zirconium as the matrix and other elements are added, and the main alloy elements are tin, niobium, iron, and so on. Zirconium alloys have good corrosion resistance, moderate mechanical properties, low atomic thermal neutron absorption cross-section, and good compatibility with nuclear fuel in the high-pressure water and steam of 300 ~ 400 ℃, which is mainly used as core structure material of water-cooled nuclear reactors. Besides that, zirconium has excellent corrosion resistance to a variety of acids, bases, and salts, and has a strong affinity with gases such as oxygen and nitrogen, and they are also used in the manufacture of corrosion-resistant and pharmaceutical mechanical components, as well as the non-evapotranspiration disinfectant in the electric vacuum and light bulb industries.

Stanford Advanced Materials supplies high-quality zirconium products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.